Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Da-Jun Cui,* Xianshun Zeng, Xuebing Leng, Fengbo Xu and Zhengzhi Zhang

National Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China

Correspondence e-mail: cuidajun@eyou.com

Key indicators

Single-crystal X-ray study T = 293 KMean σ (C–C) = 0.005 Å R factor = 0.047 wR factor = 0.120 Data-to-parameter ratio = 14.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

{[*N*-Benzyl-*N*-(2-pyridyl)amino]methylene}diphenylphosphine oxide

The title compound, $Ph_2P(O)CH_2N(CH_2Ph)C_5H_4N$ or $C_{25}H_{23}N_2OP$, was obtained by reaction of $Ph_2PCH_2N-(CH_2Ph)C_5H_4N$ and H_2O_2 . The crystal structure shows distorted tetrahedral geometry around the P atom.

Received 13 March 2003 Accepted 14 April 2003 Online 23 April 2003

Comment

Pyridylphosphines continue to generate much interest as excellent ligands for stabilizing many transition-metal coordination and organometallic complexes (Espinet & Soulantica, 1999). One important property of these ligands is that they can stabilize metal ions in a variety of oxidation states and geometries. Hence, a metal-metal bond between an electronrich metal (soft base) and a high oxidation-state metal (Lewis acid) is easily formed (Zhang & Cheng, 1996). Recently, we designed and synthesized a hetero-binuclear complex containing an Fe-Cu bond with a new pyridylphosphine ligand, *viz.* 2-(*N*-diphenylphosphinomethyl-*N*-cyclohexyl)aminopyridine (Cui *et al.*, 2001).

Pyridylphosphine oxides have recently been shown to behave either as N(pyridyl)-donor or N(pyridyl), *O*-chelating ligands upon complexation with palladium(II) and platinum(II) centres (Minghetti *et al.*, 1998; Durran *et al.*, 2000). In order to study the interesting coordination potential of this kind of ligand we synthesized a new pyridylphosphine oxide Ph₂P(O)CH₂N(CH₂Ph)C₅H₄N and its molecular structure has been determined by an X-ray diffraction study. The crystal structure of the title compound, (I), shows distorted tetrahedral geometry around the P atom. The P–O distance [1.4815 (18) Å] is shorter than those in other triarylphosphine oxides (Durran *et al.*, 2000; Minghetti *et al.*, 1998; Szlyk *et al.*, 1989; Bandoli *et al.*, 1970).

Experimental

The synthesis of (I) was carried out under an argon atmosphere. To a solution of $Ph_2PCH_2N(CH_2Ph)C_5H_4N$ (0.100 g, 0.252 mmol) in tetrahydrofuran (2 ml) was added aqueous H_2O_2 solution (30% *w/w*, 0.2 ml). The resulting solution was stirred for about 48 h, filtered to remove some insoluble material, and diethyl ether (15 ml) added. The white solid was collected by filtration and dried *in vacuo*.

 \odot 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

A view of (I), with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

A view of the packing arrangement in the unit cell of (I).

Crystal data

 $\begin{array}{l} C_{25}H_{23}N_2 OP \\ M_r = 398.42 \\ \text{Monoclinic, } P2_1/n \\ a = 9.256 \text{ (3) Å} \\ b = 14.834 \text{ (5) Å} \\ c = 15.957 \text{ (5) Å} \\ \beta = 104.979 \text{ (6)}^\circ \\ V = 2116.5 \text{ (12) Å}^3 \\ Z = 4 \end{array}$

 $D_x = 1.250 \text{ Mg m}^{-3}$ Mo K\alpha radiation Cell parameters from 573 reflections $\theta = 1.9-25.0^{\circ}$ $\mu = 0.15 \text{ mm}^{-1}$ T = 293 (2) KPlate, white $0.20 \times 0.15 \times 0.10 \text{ mm}$

Data collection

Bruker SMART CCD area-detector	3727 independent reflections
diffractometer	2051 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.062$
Absorption correction: multi-scan	$\theta_{\rm max} = 25.0^{\circ}$
(SADABS; Sheldrick, 1996)	$h = -11 \rightarrow 7$
$T_{\min} = 0.971, \ T_{\max} = 0.985$	$k = -17 \rightarrow 15$
8613 measured reflections	$l = -18 \rightarrow 18$
Refinement	
Refinement on F^2	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.047$	$w = 1/[\sigma^2 (F_o^2) + (0.05P)^2]$
$wR(F^2) = 0.120$	where $P = (F_o^2 + 2F_c^2)/3$
S = 0.97	$(\Delta/\sigma)_{\rm max} = 0.009$
3727 reflections	$\Delta \rho_{\rm max} = 0.31 \ {\rm e} \ {\rm \AA}^{-3}$
262 parameters	$\Delta \rho_{\rm min} = -0.26 \text{ e} \text{ Å}^{-3}$

Table 1

Selected geometric parameters (Å, °).

P1-O1	1.4815 (18)	P1-C13	1.804 (2)
P1-C7	1.799 (3)	P1-C1	1.808 (3)
O1-P1-C7	111.44 (11)	O1-P1-C1	111.55 (12)
O1-P1-C13	114.16 (12)	C7-P1-C1	107.96 (12)
C7-P1-C13	108.12 (12)	C13-P1-C1	103.14 (12)

All H atoms were located geometrically and refined in calculated positions using a riding model.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SMART*; data reduction: *SAINT* (Bruker, 1998) and *SHELXTL* (Bruker, 1997); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

This work was supported by the National Natural Science Foundation of China (No. 20102003).

References

- Bandoli, G., Bortolozzo, G., Clemente, D. A., Croatto, U. & Panattoni, C. (1970). J. Chem. Soc. A, pp. 2778–2780.
- Bruker (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (1998). *SMART* (Version 5.00) and *SAINT* (Version 5.00). Bruker AXS Inc., Madison, Wisconsin, USA.

- Cui, D.-J., Li, Q.-S., Xu, F.-B., Leng, X.-B. & Zhang, Z.-Z. (2001). Organometallics, 20, 4126–4128.
- Durran, S. E., Smith, M. B., Slawin, A. M. Z. & Steed, J. W. (2000). J. Chem. Soc. Dalton Trans. pp. 2771–2778.
- Espinet, P. & Soulantica, K. (1999). Coord. Chem. Rev.193-195, 499-556.

Minghetti, G., Stoccoro, S., Cinellu, M. A., Zucca, A., Manassero, M. & Sansoni, M. (1998). J. Chem. Soc. Dalton Trans. pp. 4119–4126.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

Szlyk, E., Zhang, Z.-Y., Palenik, G. J., Palenik, R. C. & Colgate, S. O. (1989). Acta Cryst. C45, 1234–1236.

Zhang, Z.-Z. & Cheng, H. (1996). Coord. Chem. Rev. 147, 1-39.