Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Da-Jun Cui,* Xianshun Zeng, Xuebing Leng, Fengbo Xu and Zhengzhi Zhang

National Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China

Correspondence e-mail: cuidajun@eyou.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.047$
$w R$ factor $=0.120$
Data-to-parameter ratio $=14.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

\{[N-Benzyl-N-(2-pyridyl)amino]methylene\}diphenylphosphine oxide

The title compound, $\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{Ph}\right) \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}$ or $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{OP}$, was obtained by reaction of $\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{~N}$ $\left(\mathrm{CH}_{2} \mathrm{Ph}\right) \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}$ and $\mathrm{H}_{2} \mathrm{O}_{2}$. The crystal structure shows distorted tetrahedral geometry around the P atom.

Comment

Pyridylphosphines continue to generate much interest as excellent ligands for stabilizing many transition-metal coordination and organometallic complexes (Espinet \& Soulantica, 1999). One important property of these ligands is that they can stabilize metal ions in a variety of oxidation states and geometries. Hence, a metal-metal bond between an electronrich metal (soft base) and a high oxidation-state metal (Lewis acid) is easily formed (Zhang \& Cheng, 1996). Recently, we designed and synthesized a hetero-binuclear complex containing an $\mathrm{Fe}-\mathrm{Cu}$ bond with a new pyridylphosphine ligand, viz. 2-(N-diphenylphosphinomethyl- N-cyclohexyl)aminopyridine (Cui et al., 2001).

(I)

Pyridylphosphine oxides have recently been shown to behave either as N (pyridyl)-donor or N (pyridyl), O-chelating ligands upon complexation with palladium(II) and platinum(II) centres (Minghetti et al., 1998; Durran et al., 2000). In order to study the interesting coordination potential of this kind of ligand we synthesized a new pyridylphosphine oxide $\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{Ph}\right) \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}$ and its molecular structure has been determined by an X-ray diffraction study. The crystal structure of the title compound, (I), shows distorted tetrahedral geometry around the P atom. The $\mathrm{P}-\mathrm{O}$ distance [1.4815 (18) \AA] is shorter than those in other triarylphosphine oxides (Durran et al., 2000; Minghetti et al., 1998; Szlyk et al., 1989; Bandoli et al., 1970).

Experimental

The synthesis of (I) was carried out under an argon atmosphere. To a solution of $\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{Ph}\right) \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}(0.100 \mathrm{~g}, 0.252 \mathrm{mmol})$ in tetrahydrofuran (2 ml) was added aqueous $\mathrm{H}_{2} \mathrm{O}_{2}$ solution $(30 \%$ w/w, 0.2 ml). The resulting solution was stirred for about 48 h , filtered to remove some insoluble material, and diethyl ether (15 ml) added. The white solid was collected by filtration and dried in vacuo.

Figure 1
A view of (I), with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

A view of the packing arrangement in the unit cell of (I).

Crystal data

$\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{OP}$
$M_{r}=398.42$
Monoclinic, $P 2_{1} / n$
$a=9.256$ (3) \AA 。
$b=14.834$ (5) \AA
$c=15.957(5) \AA$
$\beta=104.979$ (6) ${ }^{\circ}$
$V=2116.5(12) \AA^{3}$
$Z=4$
$D_{x}=1.250 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 573
reflections
$\theta=1.9-25.0^{\circ}$
$\mu=0.15 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Plate, white
$0.20 \times 0.15 \times 0.10 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min }=0.971, T_{\max }=0.985$
8613 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.120$
$S=0.97$
3727 reflections
262 parameters

3727 independent reflections
2051 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.062$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-11 \rightarrow 7$
$k=-17 \rightarrow 15$
$l=-18 \rightarrow 18$

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.05 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.009$
$\Delta \rho_{\max }=0.31 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.26 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters $\left(\mathrm{A}^{\circ},^{\circ}\right)$.

P1-O1	$1.4815(18)$	$\mathrm{P} 1-\mathrm{C} 13$	$1.804(2)$
$\mathrm{P} 1-\mathrm{C} 7$	$1.799(3)$	$\mathrm{P} 1-\mathrm{C} 1$	$1.808(3)$
$\mathrm{O} 1-\mathrm{P} 1-\mathrm{C} 7$	$111.44(11)$	$\mathrm{O} 1-\mathrm{P} 1-\mathrm{C} 1$	$111.55(12)$
$\mathrm{O} 1-\mathrm{P} 1-\mathrm{C} 13$	$114.16(12)$	$\mathrm{C} 7-\mathrm{P} 1-\mathrm{C} 1$	$107.96(12)$
$\mathrm{C} 7-\mathrm{P} 1-\mathrm{C} 13$	$108.12(12)$	$\mathrm{C} 13-\mathrm{P} 1-\mathrm{C} 1$	$103.14(12)$

All H atoms were located geometrically and refined in calculated positions using a riding model.

Data collection: $S M A R T$ (Bruker, 1998); cell refinement: $S M A R T$; data reduction: SAINT (Bruker, 1998) and SHELXTL (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work was supported by the National Natural Science Foundation of China (No. 20102003).

References

Bandoli, G., Bortolozzo, G., Clemente, D. A., Croatto, U. \& Panattoni, C. (1970). J. Chem. Soc. A, pp. 2778-2780.

Bruker (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1998). SMART (Version 5.00) and SAINT (Version 5.00). Bruker AXS Inc., Madison, Wisconsin, USA.
Cui, D.-J., Li, Q.-S., Xu, F.-B., Leng, X.-B. \& Zhang, Z.-Z. (2001). Organometallics, 20, 4126-4128.
Durran, S. E., Smith, M. B., Slawin, A. M. Z. \& Steed, J. W. (2000). J. Chem. Soc. Dalton Trans. pp. 2771-2778.
Espinet, P. \& Soulantica, K. (1999). Coord. Chem. Rev.193-195, 499-556.
Minghetti, G., Stoccoro, S., Cinellu, M. A., Zucca, A., Manassero, M. \& Sansoni, M. (1998). J. Chem. Soc. Dalton Trans. pp. 4119-4126.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Szlyk, E., Zhang, Z.-Y., Palenik, G. J., Palenik, R. C. \& Colgate, S. O. (1989). Acta Cryst. C45, 1234-1236.
Zhang, Z.-Z. \& Cheng, H. (1996). Coord. Chem. Rev. 147, 1-39.

